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Two Simple yet Accurate Equations for Calculating the Fugacity Coefficient  
Phi and the Gas Compressibility Factor Z .    
      by A.E. for mychemengmusings.wordpress.com 

In this post two new powerful equations are presented one for the Gas Compressibility 
Factor ‘Z’ and one for the Gas Fugacity Coefficient ‘phi’. Both give excellent prediction 
results for the sub-critical reduced pressure region and superheated vapor region. These 
two equations are surprisingly simple, allow direct calculation without the need for iterations 
hence easy to implement in spreadsheets or used on handheld devices and calculators! The 
two form a thermodynamically consistent pair. Three Charts have been prepared mapping 
out the predictions made with these equations.     
Numerical calculation examples are given including for superheated Steam, Ethane, 
Propane and Propylene. 
The basis for each of these equations is presented in Part III of this post giving ample 
attention to the basis on which these equations rest and their validation against measured 
data. 
 
The first new equation for the gas fugacity coefficient ‘phi’ is stated in the form of a 
corresponding states correlation  for the reduced  pressures ranging from  0 =< Pr < = 2  and 
reduced temperatures  ranging  between 0.9 =<  Tr < = 2. The Phi isotherms show a linear 
dependency on the reduced pressure!  Usually the gas fugacity coefficient ‘phi’ is obtained 
by laborious (programmed) calculations using equations of state (EOS) like the Soave-
Redlich-Kwong (SRK) or the Peng-Robinson (PR) or other elaborate (sets of) equations. 
This new equation’s predictions are within 0.4% of the Hougen - Ragatz Chart. 
 
The second new equation presented in this post is a new and surprisingly simple formulation 
of the Gas Compressibility factor Z and its dependence on reduced temperature Tr and 
reduced pressure Pr!  It is based on- and has been derived from the new equation for ‘phi’.   
Whereas the common route to obtain values for the compressibility factor Z is via equation 
of state formulations such as the “van der Waals” (vdW) equation or one of its sophisticated 
derivative formulations such as the SRK and the PR  EOS , the new formulation for Z 
presented uses the thermodynamic ‘definition’ of phi in reverse.(see part III below).  In 
addition Part III also describes a new conceptual model for the compressibility factor Z of a 
real gas that gives a theoretical, conceptual underpinning of the form of equation for Z as 
arrived at via the linear equation of ‘phi’.   This post is divided in three parts:  
 
PART I The Two Equations 

Part I  -a The Gas Fugacity Coefficient ‘Phi’ correlation.  
Part I  -b The Gas Compressibility Factor Z  (‘Z-pbe’ equation) 
Part I  -c Graphical representations of these two equations.   

PART II  Numerical Calculation examples.   
 Part II -a  Numerical examples for the Gas Fugacity Coefficient ‘Phi’ (Eq. I-1) 
 Part II -b  Numerical examples for the Gas Compressibility Factor ‘Z’ (Eq. I-2)  
PART III  The Basis for the Two Equations 

Part III  -a  the basis for the new fugacity coefficient’s correlation. 
Part III  -b  the basis for the new gas compressibility Factor Z equation. 
Part III  -c  a conceptual model for the new  Z equation  

Appendix -A  Table: Comparison of  Z-pbe equation with Lydersen data.  
Appendix  -B   The ‘marked up’ Hougen – Ragatz Chart.  
 
A pdf version of this post is given  here 
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PART I   The Two Equations  
 
Part I  -a        The Gas Fugacity Coefficient ‘Phi’ correlation.   
 
Please note the formula’s given below are in ‘excel’ style notation using as multiplication 
symbol ‘ * ‘ and for an exponent (raising to the power) the symbol ‘ ^ ‘. 
 
The gas fugacity coefficient ‘phi’ is equal to 1 for very low pressures. Consequently, for 
example, in volatility calculations the fugacity, being the product of the fugacity coefficient 
and the absolute pressure, equals the absolute (partial) pressure of the substance or 
compound.  
For low to moderately high pressures, say for reduced pressure from 0.1  to 1 or 2, the 
thermodynamically effective pressure, the fugacity ‘f ‘, is lower than the measured absolute 
gas pressure P:      f  = phi *  P   in which  phi < 1 . 
 
The following equation in corresponding states format allows you to directly calculate phi :  

 
Phi =  1 -  0.333 / Tr^3.905 * Pr    …………………………………………(Eq. I-1)   
    
in which Tr is the reduced temperature equal to T / Tcrit  and Pr the reduced pressure equal 
to P / Pcrit. This correlation is based on generalized data with Zc = 0.27 ;  this correlation is 
valid for    0.9 =< Tr  <= 2   and   0 = <  Pr   <  1.5-2 .  
The average percentage error in the calculated results is 0.41 % compared to the Hougen – 
Ragatz Chart (see Appendix). 
For clarity sake I will repeat the above formula in “math type formula format” (in pdf only) 
 
                                                                                    ……………………(Eq. I-1) 
 
 
Part I  -b       The Gas Compressibility Factor Z  new equation “Z-pbe”. 
  
The gas compressibility factor Z signifies the degree a ‘real’ gas deviates from an ‘ideal’ gas. 
For a real gas the compressibility factor is in most cases smaller than 1, reflecting the fact 
that intermolecular attraction forces do reduce the volume the gas exhibits for a given set of 
pressure and temperature conditions ( Z = V-real / V-ideal).     
 
The following equation was derived from the above fugacity correlation (see Part III -b). It is 
a surprisingly simple and explicit equation that allows direct calculation of the Z factor 
without the need for iterative calculations, easy to implement in an excel spread sheet as a 
‘single cell’ formula and no need for the ‘solver’ tool in excel :   
     
 Z   =   1 -  (0.333 * Pr / Tr^3.905) / ( 1 – 0.333 * Pr / Tr^3.905 )  ………………(Eq. I-2) 
  
in which:  ‘Tr’  is the reduced temperature  and  ‘Pr’ is the reduced pressure.  
This equation is valid for the following conditions:   0  < Pr  < =1  and  0.9 < = Tr < 2 .  
It predicts compressibility factor Z values with excellent accuracy of  0.41 % compared to the 
Lydersen measured data (Zc = 0.27). 
For clarity sake I will repeat the above equation in ‘math type formula’ format (in pdf only) 
 
                                                                                         ………………….(Eq. I-2)  
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It is interesting to note that Eq. I-2 not only has a semi-empirical basis, but can be developed 
along theoretical lines with the conceptual model described in Part III –c !  
 
 
Part I  -c    Graphical representations of these two equations. 
 
The Gas Fugacity Coefficient  Phi  Equation ( Eq.I-1) calculation results have been plotted 
on a semi-logarithmic scale versus the reduced pressure ‘Pr ’ in the following Chart (click to 
enlarge):    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Fig 1. The isotherms of the fugacity coefficient phi versus log Pr from Eq.I-1. 
 
Note how the isotherms of Phi , that according to Eq.I-1 are linear in Pr , present themselves 
as curved lines on the semi-log plot (compare the Hougen – Ragatz Chart in Appendix -B). 
 
 
The  new Compressibility Factor Z-pbe ( Eq.I-2) versus the reduced pressure Pr plotted on 
linear scales for Pr <  =1.  
  
In the next Chart of Fig. 2 the gas compressibility factor Z calculated with Eq.I-2 ( Z-pbe) has 
been plotted as follows (click on Chart to enlarge):   
 
 
 

 Gas  Fugacity Coefficient  Phi   (Zc=0.27)  versus  Reduced Pressure 
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Fig 2.  Isotherms of ‘ Z’  by the new compressibility factor Z equation  Eq. I-2  (Z-pbe). 

 
Note how the isotherms of Z according to Eq. I-2 show themselves on this linear plot as 

slightly curved with downwards sloping lines. 

 
The predictions with the Z-pbe equation for Z (Eq. I-2) have been compared to the digitized 
data from the Lydersen Chart that is based on measured data. I found for the reduced 
pressure range of 0 = < Pr < =1  that the average percentage error was 0.41 % .    
 
The comparison with Lydersen’s data has been further extended to reduced pressures 
above the critical point to check to what extent the Z-pbe equation’s predictions hold up. In 
addition its predictions were compared to values obtained from the Soave-Redlich-Kwong 
(SRK) EOS  (See Table in Appendix -A for details ).  These comparisons have shown that its 
predictions for reduced pressures above (Pr >=1) still give reasonably accurate results as 
long as the isotherms for Z  are not too closely approaching their inflexion points between 
the falling and rising of the isotherm. The eventual rising of the Z values at higher reduced 
pressures ( Pr >> 1 ) can be explained by the repulsive intermolecular forces to become 
dominating the fluid ‘s P-V-T behavior.      
 
Therefore it is of interest to also plot the values predicted with the Z-pbe equation  (Eq. I-2)  
on a semi-logarithmic plot with the reduced pressure ranging from 0.1 to 10  and plot them to 

 Generalized Gas Compressibility Factor Z   (Zc=0.27) versus  Reduced Pressure 
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the extent of their range that still give reasonable good predictions (see Table in Appendix -A 
for error%). 
 
 
The  new Compressibility Factor Equation ‘Z-pbe‘ (Eq. I-2) versus the reduced pressure Pr 
plotted on a semi logarithmic scale .  

 
The calculated Z isotherms from Eq. I-2 are shown in the next Chart up to the pressure level 
where the approach to the inflexion point starts to diminish the predictions’ accuracy.    
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.  Semi-log plot Isotherms of the new compressibility factor Z equation (Z-pbe). 

 
See Part II -b for numerical examples and comparisons with Lydersen data and predictions 
from the SRK and PR equations of state ! A more complete comparison table giving 
percentage of  error% determination is shown in the Appendix. 

 
PART  II  Numerical Calculation Examples    
 
Part II -a      Numerical Examples for the Fugacity Coefficient Phi  
 

1. Gas Fugacity Coefficient Phi for pure compounds. Example calculations. 
Example 1. For pure STEAM  at  300 oC and 70 Bar abs. 

 Generalized Gas Compressibility Factor Z  (Zc=0.27) versus Reduced Pressure 
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  > Critical properties of Water:  Tc = 647.1 oK   ; Pc = 220.6 Barabs   
  > Reduced Temperature Tr = (300+273.15)/ 647.1 = 0.8857  
  > Reduced Pressure Pr = 70 / 220.6 = 0.3173  

  ==> Fugacity Coefficient Phi = 1 - 0.333/ 0.8857^3.905 * 0.3173  = 0.830       
  Comment :  phi obtained from PR EOS: phi= 0.828 ; SRK EOS: phi=0.0.839 
  
             
 Example 2. For STEAM  at  500 oC and 140 Bar abs.   
  >         Tr =  1.1948    and     Pr = 0.6346   

==> Fugacity Coefficient Phi = 1 -0.333/ 1.1948^3.905 * 0.6346  = 0.895 
Comment :  phi obtained from PR EOS: phi= 0.877 ; SRK EOS: phi=0.894 
 

 
 Example 3.  For ETHANE  at  25 oC  and  50 Bar abs 
 > Critical properties of Ethane:  Tc = 305.43 oK  ; Pc = 48.8 Bar abs   

> Reduced Temperature Tr = (25+273.15)/ 305.43 = 0.9762   
 > Reduced Pressure Pr = 50 / 48.8 = 1.0246  

==> Fugacity Coefficient Phi = 1 - 0.333/ 0.9762^3.905 * 1.0246  = 0.625  
Comment :  phi obtained from PR EOS: phi= 0.581 ; SRK EOS: phi=0.602 

 
 
Example 4.  For PROPANE  at  85 oC  and  30 Bar abs 

 > Critical properties of Propane:  Tc = 369.9 oK  ; Pc = 42.57 Bar abs   
> Reduced Temperature Tr = (85+273.15)/ 369.9 = 0.9862    

 > Reduced Pressure Pr = 30 / 42.57 = 0.7047  
==> Fugacity Coefficient Phi = 1 - 0.333/ 0.9862^3.905 * 0.7047 = 0.734   

Comment :  phi obtained from PR EOS: phi=0.721 ; SRK EOS: phi=0.740 
 

 
Example 5.  For PROPYLENE  at  85 oC  and  30 Bar abs 

 > Critical properties of Propylene:  Tc = 365 oK  ; Pc = 46.2 Bar abs   
> Reduced Temperature Tr = (85+273.15)/ 365 = 0.9812    

 > Reduced Pressure Pr = 30 / 46.2 = 0.6494  
==> Fugacity Coefficient Phi = 1 - 0.333/ 0.9812^3.905 * 0.6494 = 0.767   

Comment :  phi obtained from PR EOS: phi=0.753 ; SRK EOS: phi=0.771 

 
 
 
 
 
Part II -b    Numerical Examples for the Compressibility Factor Z  (Eq. I-2)  
 
Equation I-2 is derived from the correlation found for the fugacity coefficient (Eq. I-1) that is 
based on the generalized Hougen - Ragatz Chart valid for compounds with Zc = 0.27. ( see 
derivation in PART III -b). In the numerical calculation examples given here I will in addition 
verify the results for the Z values obtained against the measured data of Lydersen et al. In 
addition also a comparison is done with the results generated by the SRK EOS taking n-
Pentane as “model” compound as its critical Z factor is very close to 0.27 and to be precise: 
0.269. 
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Example 1.   Calculations & comparison with Lydersen ‘s measured data  
Given the following reduced Temperature Tr  and reduced Pressures Pr : 
 
 Tr=      Pr=            Z-phi based equation (Eq.I-2)       Lydersen      Error%  
!=== ! ! ===!   !=================================!   !========!   !=====! 
 0.94     0.3       Z-pbe= 1 – (0.333/0.94^3.905 * 0.3)     =0.8543        0.855   0.1% 
           (1 -0.333/0.94^3.905*0.3) 

 
 0.98     0.7        Z-pbe = 0.6627          0.6685   0.9%  
 
 1.10     1.0        Z-pbe = 0.7021           0.701   0.2% 
 
 1.30     0.8   Z-pbe = 0.8943         0.8893   0.6% 
 
Example 2   n-Pentane   ( Zc = 0.269  ; Tc = 469.6 oK  ; Pc = 33.74 Bar abs)       
For temperature & Pressure conditions of  
Pressure          Temperature           Pr         Tr          Z-pbe         Z-Lydersen       Z-SRK 
13.50  Bara        187.1 oC            =0.40     =0.98     = 0.8316       = 0.8325        = 0.8363 
  
26.99 Bara    196.5  oC           =0.80     =1.0      = 0.6369        = 0.6370        = 0.6388                                   
 
26.99 Bara         337.3  oC           =0.80     =1.3      = 0.8943        = 0.8893        = 0.8989 
 
 
Example 3  Superheated Steam  ( Zc = 0.2294  ; Tc = 647.1 oK  ; Pc = 220.6 Bar abs)       

 
Pressure   Temperature   Deg.Super         Pr                 Tr              Z-pbe        Z-steamTable 
140 Bara        550 oC          213  oC       = 0.6345        = 1.272      = 0.910        = 0.912           
 
140 Bara        375 oC          37.5 oC       = 0.6345        = 1.002      = 0.734       = 0.724 
 
60 Bara          400 oC          125 oC         = 0.2719       =1.040        =0.9158      =0.915 
  
It is worth noting for the example of Superheated Steam that notwithstanding the fact that 
the Zc value for Water (0.229) is significantly smaller than Zc = 0.27 on which the fugacity 
and the Z-pbe equation are based, nevertheless we find that good results are obtained in 
practice. Why ?  Because the greater the degree of superheat of the vapor the farther away 
removed from the critical conditions the less influence “Zc” has on the increasing degree of 
ideality of the vapor!     
 

 
 
PART  III     Basis for the two equations.   
 
Part III –a  The equation for The Gas Fugacity Coefficient ‘Phi ‘. 

You perhaps may have wondered why I started this post with the Gas Fugacity Coefficient 
first and not with the Gas Compressibility Factor Z ?  In thermodynamical treatises or 
lectures the Equations of State expressed in the form of an equation in “Z “  are usually dealt 
with first followed later by the subject of Fugacity ( thermodynamically active pressure) and 
the Gas Fugacity Coefficient ‘phi ‘.  
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The connecting and defining equation between the two reads as : 
 
                                                      
                                                                        for Constant  T  
 
 
 
Ln(phi) = def. Integral  0 to P  of   [ (Z-1) / P ] dP     for constant T  
 
from this integration result the fugacity coefficient “phi “is obtained, allowing the 
Fugacity “ f  “ to be calculated as  f = phi * P.   

In general ‘phi ‘ can be obtained in one of two ways. If you have an analytical expression for 
Z , for example from an EOS, then via the above defining integral expression ‘phi’ maybe 
obtained. However depending on the complexity of the equation or correlation for ‘Z’ as 
function of temperature and pressure, performing this integration to obtain an analytical 
expression for the integral may be difficult or prove impossible. Alternately, if you have 
measured data for ‘Z’ as function of P and T you can do a graphical integration by 
determining the area under the plot of Z-1 values along an isotherm versus pressure.  
  
The Zv correlation 
Having developed the Zv correlation as function of reduced temperature and reduced 
pressure (see earlier post). I was attempting to find an expression for the corresponding ‘phi’ 
based on that correlation. However as you can see for yourself integration of this equation is 
not straight forward to say the least. Next I checked out what form of equation ‘phi’ takes 
when based on the different equations of state (vdW, SRK, PR) as you can observe yourself 
these integrations have been performed but are rather elaborate and complex.   
.  
The Hougen – Ragatz Chart for Phi versus Pr 
Following this, I turned to the Hougen -Ragatz Chart with plots of ‘phi’ versus reduced 
pressure Pr for various isotherms of Tr (see Appended Chart). When digitizing data points 
along a series of isotherms (for Tr of 0.90 to 2)  and simply plotting the data against a linear 
Pr scale, I was in for a surprise:  all the way up to fairly high reduced pressures Pr , even 
beyond Pr =1,  the ‘phi‘ values showed as a precise straight line versus Pr!  Not something 
to be surmised when looking at the Hougen – Ragatz Chart that uses a semi-logarithmic plot 
of phi versus Pr ranging over three decades from 0.1 to 100 !   
 
In the Table below the linear regression results for equation ‘ Phi = A – B * Pr ‘  I obtained 
are given for the isotherms listed:      
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Table Regression Results  
 
Tr =        A =               B=                Pr from              r^2 

2.0  0.999  0.0232 0.1 -  2 0.9950   
1.8  1.001  0.0321 0.1 -  2 0.9955 
1.5  0.9993 0.0682 0.1 -  2 0.9988 
1.4  0.9991 0.0885 0.1 -  2 0.9996 
1.3  1.0025 0.1250 0.1 -  2 0.9987 
1.25  1.002  0.1440 0.1 -  2 0.9984 
1.20  1.004  0.1650 0.1 -  2 0.9989 
1.15  1.0022 0.1956 0.1 -  2 0.9975 
1.10  1.0052 0.2292 0.1 -  2 0.9985   
1.00  1.0078 0.3293 0.1 -  2 0.9907 
1.00  1.0128 0.3337 0.1 -1.0 0.9977 
 
Obviously the constant ‘A’ equals 1.000  as for Pr = 0  the theoretical expectation is  Phi = 
1.000.   The constant ‘B’  was correlated with Tr as :  1/ B =  3 * Tr^3.905  and hence we 
obtain for the fugacity coefficient ‘phi‘ the relation: 

 
Phi = 1 – 0.333/ Tr^3.905 * Pr       ; this is the equation reported in Part I as Eq. I-1 

 
This is a remarkable simple equation for the fugacity coefficient. Granted it covers obviously 
only the left hand side of what appears in the Hougen – Ragtz Chart as isotherms shaped in 
the form of a “bathtub curve“ extending over the three decades of Pr !  
This equation for ‘phi’ is very handy and useful for the low to moderately high reduced 
pressure range!   
 
 
Part III –b    The equation for The Gas Compressibilty Factor  Z  ( Z-pbe)  . 

 
This section of Part III describes how a new equation for the compressibility factor Z based 
on the phi equation was arrived at, which equation I have labeled as the “Z-pbe“ equation. 
Contemplating this very simple equation for ‘phi’ then immediately the question rose in my 
mind what kind of ‘Z equation’ gives rise to such simple equation for ‘phi’ ?  
Asking myself: can you find an answer by reversing equation III-1 ?  Yes , by realizing that:  
  
 
                                    and substituting  
 
 
 
this gives:  
 
                                                                                        ; see equation Eq. I-2  
 
 
Having never ever seen an expression or equation for the gas compressibility factor Z like 
this one, then the question became: how good is it in predicting Z values? 
And the answer I found was:  beyond expectation, very good! 
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Having available the digitized data for Lydersen, an evaluation of its predictions against the 
Lydersen data showed that the average percentage error is 0.41%  for the following 
conditions    0 = < Pr < = 1    with   0.90 = < Tr < = 2 . 
Interestingly I found furthermore this equation still gives reasonable results for a limited 
range of super-critical pressures ( Pr > 1  ; see validation calculations and checklist in the 
Appendix -A) .  
 
Having said that the equation for ‘phi’ is remarkable and simple, I would certainly say the 
very same for this new compressibility factor equation.  I will refer to this equation and its 
predictions as the phi based equation “Z-pbe “.  Note that these two equations together form 
a (thermodynamically) consistent pair. 
 
But wait there is something more to notice about equation (Eq. I-2). The fraction part of this 
equation reminds me of a formula in physics that looks very similar in form and shape! 
Which one? Answer: the ‘Langmuir equation’ that describes the process of adsorption of a 
compound (the adsorbate) on a solid substrate (the adsorbent). If we “see” the factor 
“0.333/Tr^3.905“ as a temperature dependent equilibrium constant ‘Keq’ then, as you can 
see for your self, this fraction looks very much similar as:   
  
 
  
   
 
How was the theoretical ‘Langmuir’ equation arrived at ? Can I try to develop a model for the 
compressibility factor Z as well? The answer is yes (!) as explained in the following section.    
 
 
Part III –c   The Conceptual Model for the Real Gas Compressibility Factor Z . 
 
The state of an ideal gas can be described by a combination of two intensive variables ( “P” 
and “T”) plus two extensive variables ( the number of kmoles “N” and the volume “V “).  

 
 
 
The state of any gas , real or ideal, can be described by a combination of two intensive 
variables ( P and T ) plus  two extensive variables plus the compressibility factor ” Z ” . 
 
 
 
in which ‘Z’ is a dimensionless factor that accounts for the degree of non-ideality of the gas. 
With Z=1 it reflects that the real gas behaves as if it is an ideal gas in which only kinetic 
energy of the gas particles is dominant and necessary to be taking into account to describe 
its behavior and any attraction forces between particles can be and are ignored! Hence we 
can we can see the Z factor as reflective of the interplay, the balance between the kinetic 
energy and the potential energy (the attraction forces) in the accounting for its behavior.   
In analogy with the Langmuir approach let us conceive of the state of a real gas at a given 
reduced pressure Pr and  temperature Tr not as a static “(macro-) state” but as a dynamic 
(micro-)  equilibrium state. Just as Langmuir considers two ‘species’ interacting with each 

other and establishing an equilibrium, that is between the adsorbate molecules and the 
‘sites’ on the solid that are capable of attracting these molecules.  
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In an analogous fashion we can conceive of a real gas as of consisting of two types of gas 
particles (atoms, molecules) present in the gas (mixture) : on the one hand there are 
particles behaving as ideal gas i.e. unaffected by inter-particle attractive forces and on the 
other hand there are the ones that are affected, that are “under the influence’’ of the mutually 
attracting inter-molecular forces. If we remember the ‘kinetic gas theory’ saying that the 
velocity of gas particles is not uniform but there exists even in the ideal gas state a whole 
distribution of velocities (Maxwell). Some have high velocity some low. The gas temperature, 
as macro- property, is a measure for the average kinetic energy of the gas.       
Refreshing our memory thus, it helps us to conceive of the simultaneous presence of ideal 
gas like behaving, high velocity particles and gas particles at the low end of the distribution 
that are or potentially can be under the influence of the mutual attraction force (field).   
 
If we look at the following sketch of Z values along an isotherm plotted against reduced 
pressure 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
we can see that the fraction of the total of gas particles that (on average) are undergoing 
attraction is indicated by the value of ‘1-Z’ at the conditions of Tr=Tr1 and Pr=Pr1. This 
fraction thus is a function of Pr and Tr !  The lower the temperature and the higher the 
pressure the less the number of particles that are able to move like ideal gas particles.  
 
Consider an amount of N kilomol gas at reduced temperature and pressure conditions Tr 
and Pr. Then at equilibrium a number of particles  “ I “ behave as ideal gas while the 
remainder of particles behave as  ‘attracted or associated gas “ A ”:    
 
           k2 
                                      
    I     k1  A 
 
or this equilibrium described in words a number of “ideal-behaved” gas particles ‘I’ are in 
dynamic equilibrium with the number of particles that are “attraction-behaved” : ‘A’   thus 

those that also posses potential energy. 
 
 

    Figure  Showing 1-Z as fraction of gas contracted due to

inter-molecular attraction forces

1 Z = 1

1- Z

Z

at Tr1,Pr1

isotherm Tr=Tr1

Z

Pr1

0 Pr 1
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the rate of formation of ‘A’ is:     
 
 
and the reverse rate of forming ‘I‘ is    
 
We can write these also in terms of the fractions of the total number N as:  na = Na/ N 
and ni = Ni/N.  and thus   na + ni =1. 
 
at equilibrium the reverse formation of ‘I‘  equals the forward formation rate of ‘A’   
 
.  
 
dividing by k1 and substituting  (1-na)   for ni  we get :  
 
 
 
defining k2/k1 as the equilibrium constant Keq we find for na : 
 
 
 
 
 
With this equation we have found an expression that describes the fraction of gas particles 
‘na’ , that are influenced by mutual attraction in a gas at equilibrium at Pr and Tr, in terms of 
reduced gas pressure and the equilibrium constant Keq.  
 
Having pointed out above that ‘na’  is equal to ‘1- Z’  , thus  we find:  
 
   
                                                                                       
 
 
This equation is identical to the equation that was derived in section  Part III –b which was 
arrived at via an entirely different route,  viz. the route starting with measured data for the 
gas fugacity coefficient ‘phi’  and so on ! In general the equilibrium constants are a sole 
function of reduced temperature ! 
 
And with this equation we have developed a model for the compressibility factor Z based on 
the conception of (any) real gas as an aggregate of gas particles some of which behave as if 
in an ideal gas (only kinetic energy) and some others behave as in a gas where attraction 
forces (van der Waals’ forces) come into play and determine their behavior! These two 
groups of gas particles are in a dynamic equilibrium for a given (static) pressure and 
temperature! 
 
I will call this equation the “ Zeq” equation because it will allow the equilibrium constant ‘Keq’ 
to be explicitly written as a function of Pr and together with a set actual measured Z value 
data and determine the dependency of this constant as a function of reduced temperature 
Tr.  
 
 
 

ria PNkdtdN 2/

ai NkdtdN 1/
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to determine how the temperature function  can be improved and extended to cover the low 
temperature region below Tr =0.9 !  ( t.b.d. )  
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
====Appendices begin on the next page === 
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APPENDIX -A 
 

COMPARISON AND VALIDATING THE “ Z-pbe” EQUATION 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

COMPARISON OF THE ' Z-pbe '  EQUATION PREDICTIONS  FOR REFERENCE  Z-pbe values compared with

Z-SRK values n-Pentane as model compound

With the measured data (digitized) of LYDERSEN 

(generalized for Zc =0.27) Model Component: n-Pentane  Zc = 0.269

n-Pentane Critical Data (APIDATABASE)

Tc  (oK)  = 469.6 Pc (Bara) = 33.74

Lydersen

Z-phibased Chart =============         N-Pentane =========

 Z-pbe measured Error%  

Tr = Pr = calc Eq. 2 digitiz. Data T oK P bara Z -SRK EOS Z-pbe diff.%

0.9 0.1 0.9471 0.9455 0.2 422.64 3.37

0.9 0.2 0.8883 0.890 0.2 422.64 6.75 0.8879 0.0

0.9 0.3 0.8225 0.828 0.7 422.64 10.12 0.8239 0.2

0.9 0.4 0.7484 0.763 1.9 422.64 13.50 0.7509 0.3

0.94 0.2 0.9073 0.907 0.0 441.42 6.75 0.9030 0.5

0.94 0.3 0.8543 0.855 0.1 441.42 10.12 0.8494 0.6

0.94 0.4 0.7958 0.800 0.5 441.42 13.50 0.7906 0.7

0.94 0.5 0.7310 0.734 0.4 441.42 16.87 0.7243 0.9

0.94 0.6 0.6588 0.6566 0.3 441.42 20.24 0.6448 2.2

0.96 0.2 0.9153 0.9156 0.0 450.82 6.75 0.9174 0.2

0.96 0.3 0.8673 0.8691 0.2 450.82 10.12 0.8718 0.5

0.96 0.4 0.8149 0.8181 0.4 450.82 13.50 0.8221 0.9

0.96 0.5 0.7573 0.7637 0.8 450.82 16.87 0.7669 1.2

0.96 0.6 0.6940 0.7025 1.2 450.82 20.24 0.703 1.3

0.96 0.7 0.6238 0.6153 1.4 450.82 23.62 0.623 0.1 two phase

0.96 0.75 0.5857 2-phase 450.82 25.31 0.5699 2.8 two phase

0.96 0.8 0.5456 2-phase 450.82 26.99 0.4879 11.8 two phase

0.98 0.2 0.9223 0.9219 0.0 460.21 6.75 0.9232 0.1

0.98 0.3 0.8788 0.8789 0.0 460.21 10.12 0.8814 0.3

0.98 0.4 0.8316 0.8325 0.1 460.21 13.50 0.8363 0.6

0.98 0.5 0.7802 0.7825 0.3 460.21 16.87 0.7879 1.0

0.98 0.6 0.7242 0.7290 0.7 460.21 20.24 0.7321 1.1

0.98 0.7 0.6627 0.6685 0.9 460.21 23.62 0.6676 0.7

0.98 0.75 0.6297 0.6274 0.4 460.21 25.31 0.6296 0.0

0.98 0.8 0.5950 0.5774 3.0 460.21 26.99 0.5851 1.7

1 0.2 0.9286 0.9279 0.1 469.60 6.75 0.9286 0.0

1 0.3 0.8890 0.890 0.1 469.60 10.12 0.8901 0.1

1 0.4 0.8463 0.847 0.1 469.60 13.50 0.849 0.3

1 0.5 0.8002 0.804 0.4 469.60 16.87 0.8049 0.6

1 0.6 0.7503 0.7565 0.8 469.60 20.24 0.7566 0.8

1 0.7 0.6960 0.703 1.0 469.60 23.62 0.7022 0.9

1 0.8 0.6369 0.6370 0.0 469.60 26.99 0.6388 0.3

1 0.85 0.6052 0.5921 2.2 469.60 28.68 0.6011 0.7

1 0.9 0.5720 0.5274 8.5 469.60 30.37 0.5566 2.8

1.1 0.2 0.9519 0.9510 0.1 516.56 6.75 0.9497 0.2

1.1 0.4 0.8989 0.896 0.3 516.56 13.50 0.897 0.2

1.1 0.6 0.8403 0.836 0.5 516.56 20.24 0.8406 0.0

1.1 0.8 0.7751 0.775 0.0 516.56 26.99 0.7804 0.7

1.1 1 0.7021 0.7010 0.2 516.56 33.74 0.7157 1.9

1.1 1.2 0.6199 0.6219 0.3 516.56 40.49 0.6462 4.1

1.1 1.4 0.5266 0.5375 2.0 516.56 47.24 0.5752 8.5

1.2 0.2 0.9662 0.9640 0.2 563.52 6.75 0.9641 0.2

1.2 0.3 0.9485 563.52 10.12 0.946 0.3

1.2 0.4 0.9301 0.9260 0.4 563.52 13.50 0.927 0.3

1.2 0.6 0.8913 0.8840 0.8 563.52 20.24 0.8906 0.1

1.2 0.8 0.8496 0.8430 0.8 563.52 26.99 0.8531 0.4

1.2 0.9 0.8276 563.52 30.37 0.8343 0.8

1.2 1 0.8047 0.7960 1.1 563.52 33.74 0.8156 1.3

1.2 1.2 0.7561 0.749 0.9 563.52 40.49 0.778 2.8

1.2 1.4 0.7034 0.7046 0.2 563.52 47.24 0.7429 5.3

1.2 1.6 0.6460 0.6545 1.3 563.52 53.98 0.7099 9.0

1.3 0.2 0.9755 0.974 0.2 610.48 6.75 0.9743 0.1

1.3 0.4 0.9498 0.9446 0.5 610.48 13.50 0.9488 0.1

1.3 0.6 0.9227 0.9158 0.8 610.48 20.24 0.9236 0.1

1.3 0.8 0.8943 0.8893 0.6 610.48 26.99 0.8989 0.5

1.3 1 0.8642 0.8556 1.0 610.48 33.74 0.8749 1.2

1.3 1.2 0.8325 0.8257 0.8 610.48 40.49 0.852 2.3

1.3 1.4 0.7990 0.7961 0.4 610.48 47.24 0.8304 3.8

1.3 1.6 0.7635 0.7667 0.4 610.48 53.98 0.8107 5.8

1.3 1.8 0.7258 0.7377 1.6 610.48 60.73 0.7930 8.5

1.3 2 0.6858 0.7136 3.9 610.48 67.48 0.7779 11.8
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Note: The Z values obtained from a Soave-Redlich-Kong EOS program calculation for high 
Tr > 1.1  and Pr > 1  seem to show systematic too high values. For instance at Tr = 1.8 and 
Pr > 1.2 the values slightly dip and then rise again barely getting below 0.99 !! The Lydersen 
Chart for the isotherm Tr=1.80 shows a minimum value of about 0.92 however this occurs at 
a reduced pressure value of close to Pr = 4  (and not at about Pr = 1.5 as the Z-srk values 
show here). 
  
  
     
 
 
 
==Next Page contains a marked up copy of the Hougen – Ragatz Chart == 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.4 0.2 0.9818 0.981 0.1 657.44 6.75 0.9817 0.0

1.4 0.4 0.9629 0.9609 0.2 657.44 13.50 0.9638 0.1

1.4 0.6 0.9433 0.9405 0.3 657.44 20.24 0.9466 0.4

1.4 0.8 0.9229 0.9198 0.3 657.44 26.99 0.93 0.8

1.4 1 0.9017 0.8975 0.5 657.44 33.74 0.9143 1.4

1.4 1.2 0.8797 0.8754 0.5 657.44 40.49 0.8996 2.2

1.4 1.4 0.8568 0.8557 0.1 657.44 47.24 0.886 3.3

1.4 1.6 0.8329 0.8366 0.4 657.44 53.98 0.8737 4.7

1.4 1.8 0.8080 0.818 1.2 657.44 60.73 0.8627 6.3

1.4 2 0.7820 0.8038 2.7 657.44 67.48 0.8533 8.4

1.4 2.5 0.7118 0.7703 7.6 657.44 84.35 0.8372 15.0

1.6 0.2 0.9893 0.9887 0.1 751.36 6.75 0.9912 0.2

1.6 0.4 0.9783 0.9783 0.0 751.36 13.50 0.983 0.5

1.6 0.6 0.9671 0.9685 0.1 751.36 20.24 0.9754 0.9

1.6 0.8 0.9556 0.9598 0.4 751.36 26.99 0.9683 1.3

1.6 1 0.9439 0.9483 0.5 751.36 33.74 0.9619 1.9

1.6 1.2 0.9319 0.9355 0.4 751.36 40.49 0.9562 2.5

1.6 1.4 0.9196 0.924 0.5 751.36 47.24 0.9512 3.3

1.6 1.6 0.9071 0.913 0.6 751.36 53.98 0.947 4.2

1.6 1.8 0.8942 0.900 0.6 751.36 60.73 0.9435 5.2

1.6 2 0.8811 0.8884 0.8 751.36 67.48 0.9408 6.3

1.6 2.5 0.8468 0.8672 2.3 751.36 84.35 0.9374 9.7

1.6 3 0.8104 0.8538 5.1 751.36 101.22 0.9388 13.7

1.8 0.2 0.9932 0.991 0.2 845.28 6.75 0.9967 0.3

1.8 0.4 0.9864 0.9858 0.1 845.28 13.50 0.9939 0.8

1.8 0.6 0.9795 0.9823 0.3 845.28 20.24 0.9915 1.2

1.8 0.8 0.9724 0.9783 0.6 845.28 26.99 0.9895 1.7

1.8 1 0.9653 0.974 0.9 845.28 33.74 0.988 2.3

1.8 1.2 0.9581 0.9651 0.7 845.28 40.49 0.9869 2.9

1.8 1.4 0.9507 0.957 0.7 845.28 47.24 0.9862 3.6

1.8 1.6 0.9433 0.9509 0.8 845.28 53.98 0.9861 4.3

1.8 1.8 0.9357 0.9455 1.0 845.28 60.73 0.9863 5.1

1.8 2 0.9281 0.9393 1.2 845.28 67.48 0.9871 6.0

1.8 2.5 0.9085 0.9269 2.0 845.28 84.35 0.9908 8.3

1.8 3 0.8881 0.9291 4.4 845.28 101.22 0.9971 10.9
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Appendix - B    The Hougen- Ragatz Chart 
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